
A Novel B-tree Scheme for Flash Memory

VanPhi Ho, Dong-Joo Park
School of Computer Science and Engineering,

 Soongsil University

Seoul, Korea

{hvphi, djpark}@ssu.ac.kr

Abstract

Flash memory has been widely used because of its advan-

tages such as fast access speed, nonvolatile, low power

consumption. However, erase-before write characteristic

causes the B-tree implementation on flash memory to be

inefficient because it generates many flash operations.

This study introduces a novel B-tree scheme and an index

buffer management scheme, called BMS which works over

FTL. BMS could reduce the number of read and write

operations and minimize the number of pages used to store

the B-tree by applying overflow mechanism and

eliminating redundant index units in the index buffer. The

experimental results show that BMS yields a better

performance than that of the other existing variants of B-

tree index.

Keywords: B-tree index, flash-aware index, flash memory.

I. Introduction

Flash memory [1-2] has been widely used because it has

many positive consequences such as high speed access, low

power consumption, small size and high reliability. Beside

these advantages, it has some downsides including erase-before

write, limited life cycle. To help hosts access data stored inside

flash memory as accessing disk drives, a module called Flash

Translation Layer (FTL) is used to process the logical-to-

physical address mapping between the host and flash memory.

The FTL [1] has two main features: address mapping and

garbage collection. To date, some FTL algorithms have been

proposed to confine physical limitation characteristics and

improve the overall performance of flash memory.

Despite the fact that performance of a flash memory has

been enhanced by using FTL algorithms, it may encounter

performance degradation problems when implementing B-tree

index directly because the overwrite operations on flash

memory frequently occur in case of updating B-tree nodes.

This paper proposes a novel B-tree scheme and a new

buffer management scheme, called BMS which uses a main-

memory resident index buffer to temporarily store newly

created index units. When the index buffer runs out of space,

the first index unit and its related index units are selected, then

the BMS builds a logical node and finally writes the node into

the flash memory. BMS could not only reduce the number of

write operations, minimize the number of pages used by

applying overflow mechanism, but also reduce the number of

commit operations by buffering index units and eliminating

redundant index units in the index buffer.

The experimental results indicate that our proposed B-tree

index structure achieves a better performance in comparison

with the other existing B-trees.

The rest of this paper is organized as follows: Section 2

reviews basic knowledge of flash memory, flash-aware index

structures and discusses the drawbacks of related works. Next,

the design of BMS and its operations are presented in Section

3. Section 4 experimentally evaluates the efficiency of BMS,

and finally, Section 5 concludes the paper.

II. Background and related works

Flash memory is a type of nonvolatile storage device that is

widely used nowadays. Unlike a hard disk, flash memory

consists of a number of NAND flash memory arrays, a

controller and a SRAM. A flash memory is organized in many

blocks and each block contains a fixed number of pages. A

page is a smallest unit of read and write operations, while erase

operations are handled by block. Flash memory requires an

intermediate software layer called Flash Translation Layer

(FTL) [1] for managing and controlling data by which the

overall performance of flash memory can be enhanced.

B-tree index [3] is a structure that is widely used in many

file systems and database management systems in consequence

of quickly access capability. However, the frequent random

writes of B-tree may degrade the efficiency of B-tree index on

flash memory as well as the lifecycle of flash memory because

of the erase-before write limitation of flash memory.

To address these problems, variants of B-tree have been

proposed for flash memory. Wu et al. presented BFTL [4], the

first B-tree variant. BFTL is composed of a reservation buffer

and a node translation table. Every newly created index unit

which reflects the inserted, deleted or modified records is

temporarily stored in the reservation buffer. When the

reservation buffer is full, all index units in the buffer are

flushed to flash memory in FIFO order by an internal operation

of BFTL called commit. Since many index units for the same

node may be written in various pages, a node translation table

is used to collect index units and maintain the information of

the pages having the index units of the same B-tree node. As a

result, BFTL reduces the number of flash operations. However,

it may generate many read operations to access a B-tree node

because the data of one node may be scattered in different

pages. Moreover, the node translation table and its list must be

maintained in RAM and its size may rapidly grow. Therefore,

BFTL consumes a large amount of main memory. In addition,

BFTL has a variety of redundant index units in the index buffer

leading to that many write operations are performed.

 In order to solve the drawbacks of BFTL, a new index

buffer management scheme named IBSF [5] was proposed.

The main idea of IBSF is to store all index units associated

with a B-tree node into one page, so IBSF does not need the

node translation table. Similar to BFTL, IBSF temporarily

stores newly created index units into the index buffer. When

flushing records from the index buffer to flash memory, IBSF

selects victim index units by identifying the records to be

inserted into a same logical node. This prevents them from

spreading across several flash pages. Thus, IBSF reduces the

search overhead of BFTL. However, due to the fact that there

are a lot of redundant index units in the index buffer of IBSF,

many commit operations and write operations are executed.

Later on, a write-optimized B-tree layer for NAND Flash

memory (WOBF) [6] was proposed. Basically, WOBF inherits

the advantages of BFTL and IBSF. It employs the node

translation table used in BFTL and the commit policy of IBSF.

Its performance is improved by sorting all the index units in

the index buffer before performing commit operations. Sorting

all the index units prevents the index units belonging to the

same node from being scattered over many pages. This reduces

the number of read operations when building a logical node.

Nevertheless, similar to BFTL and IBSF, WOBF still has a lot

of redundant index units in the index buffer.

III. The design and implementation of BMS

A. The design of BMS

This section presents a new B-tree index structure and a

new buffer management scheme, called BMS, to efficiently

implement a B-tree on flash memory. Its objective is to

significantly reduce the number of flash operations when

building a B-tree and minimize the number of flash pages used

to store the nodes of B-tree. BMS is a software module which

can be used by any access module for the application using the

B-tree on flash memory. It processes the B-tree related

requests from upper layer and sends requests to FTL.

In order to achieve the aforementioned goal, we maintain a

main-memory resident index buffer which temporarily stores

newly created index units and a B-tree module which is resided

in flash to avoid losing data.

Figure 1 shows the architecture of BMS comprising an

index buffer and a B-tree module.

The B-tree module adopts the overflow mechanism which

does not split the leaf node if the leaf node is fulfilled by

sequential key values. In BMS, instead of splitting the full leaf

node whose keys are inserted sequentially, the leaf node is

written into flash memory before the overflow occurs. This

mechanism helps BMS reduce the large number of read, write

operations. The index buffer is managed by the commit policy.

It is used to store index units temporarily which reflect the

modified nodes.

The index unit consists of components of the original B-

tree node: primary_key, data_ptr, parent_ptr, right_ptr, and

left_ptr. Besides the original components, the index unit has

two more components that are node_identifier and type. The

node_identifier denotes to which B-tree node the index unit is

belonging. The type distinguishes whether the data is for the

insertion or deletion.

The index buffer manages two type of index units:

insertion_type and deletion_type. When the index buffer is

full, commit operations are executed to flush some index units

from index buffer to flash memory. Since BMS stores all index

units for one node in one page and many redundant index units

in the index buffer are eliminated, a large number of read and

write operations are reduced when constructing B-tree.

B. The implementation of BMS

1. Insertion operation

When a record is inserted to B-tree, one or more index

units are created to reflect the insertion. The processing is

performed as follows: BMS checks if there is a redundant

index unit which has the same primary key in the index buffer

or not. In case of existing, BMS deletes the redundant index

unit, and then inserts the newly created index unit into the

index buffer. On the contrary, BMS checks whether the index

buffer is full or not. If the index buffer is not full, BMS inserts

the newly created index unit into it. By contrast, BMS

performs a commit operation to vacate the index buffer, then,

inserts the newly created index unit into the buffer.

A special case of the insertion operations is that all keys of

a leaf node are inserted contiguously. This could be

exemplified by inserting sequential records as shown in Figure

2. In this example, node D has 4 keys in which each key value

in turn is 13, 14, 15, and 16. If a record with key = 20 is

inserted into the general B-tree, the leaf node D is overflow,

and in consequence of that, the leaf node D is split into two

nodes. A split operation of a leaf node results in many read,

write and erase operations and it may lead to a serial split

operation of the parent nodes in the general B-trees. Therefore,

the number of flash operations increases significantly. BMS

performs these insert operations in a different way applying

overflow mechanism. BMS will store the whole node D into

flash memory before the overflow occurs instead of splitting

Figure 1. Overall architecture of BMS

Figure 2. An example of sequential insertion

the leaf node D. Afterwards, the new record is inserted into a

new node E.

Processing insert operations under this order allows BMS

to reduce a number of flash operations. Additionally, the page

utilization increases because the utilization of the leaf is full in

BMS. As about 80-90% of the write pattern is sequential in the

practical file systems [7, 8], the performance of BMS in the

practical systems will be enhanced.

2. Deletion operation

Similar to an insertion operation, when a record is deleted

from B-tree, an index unit is created to reflect the deletion.

However, the processing of deletion operation is a bit different

from that of insertion operation due to the discrepancy in the

structure between deletion_type and insertion_type index unit.

For the deletion_type, it only needs the location of the entry in

the node to reflect the deletion of entry in the B-tree node.

Since the location of entries can be expressed as a bit flag set,

the deletion_type index unit maintains a bit flag set to mark the

entries to be deleted. Therefore, many deletion_type index

units for one node can be stored in one index unit. This helps

BMS reduce the number of redundant index units in the index

buffer.

The processing of deletion operation is executed as

follows: A deletion_type index unit is created when a record is

deleted. BMS checks whether or not the index buffer has the

insertion_type index unit which has the same key value as that

of the newly created index unit. If so, BMS deletes the

insertion_type index unit without inserting the newly created

index unit (deletion_type index unit) into the index buffer. On

the other hand, if there is a deletion_type index unit having the

same node_identifier as that of the newly created index unit,

BMS updates it by converting the bit flag set. Nevertheless, if

there is not, BMS inserts the newly created index unit into the

index buffer if the index buffer is not full. Otherwise, a commit

operation is executed to vacate the index buffer and then the

newly created index unit is inserted into the index buffer.

As shown in the figure 3, the index unit <14, C, i> is the

redundant index unit when the index unit <14, C, d> is created.

3. Commit operation

The newly created index units are temporarily stored in the

index buffer. Owing to the limitation of the index buffer size,

BMS has to flush index units from the index buffer to flash

memory when the index buffer is full by using commit

operation. The commit operation is as follows: First, BMS

chooses the first index unit in the index buffer and collects its

related index units. Next it reads the page associated with this

index unit, builds the logical B-tree node and finally writes the

node into flash memory.

Algorithm 1 presents detail of the commit operation. In line

1, BMS gets the first index unit in the index buffer. In line 2 to

8, BMS collects all index units which belong to the same node

with the first index unit. After collecting index units, BMS

reads the logical node related to the victim index units, reflects

victim index units into the logical node and then writes the

logical node into flash memory as displayed from line 9 to 11.

Algorithm 1. Commit operation

1: Input: New_index_unit

2: Output: none

3: v_identifier=the first index unit identifier in the buffer

4: for i=2 to sizeof(index_buffer)

5: if v_identifier is the same as the identifier of index_unit(i)

6: collect index_unit(i) as victim index units

7: end if

8: end for

9: read the logical node related to the victim index units

10: reflect victim index units into the logical node

11: write the logical node into flash memory

Since redundant index units in the index buffer are

eliminated, BMS reduces the number of index units in the

index buffer. Consequently, BMS reduces a large number of

commit operations and write operations on flash memory.

IV. Performance evaluation

This section shows the experimental results achieved by

applying the proposed BMS and compares its performance to

that of the original B-tree, BFTL and IBSF. All variant B-trees

were performed on a NAND flash simulator which might be

able to count the internal flash operations (read/write/erase).

This simulator was configured for 64MB SLC NAND flash

memory with 528 byte page size and 16 Kbyte block size.

Every node of B-trees had 64 entries, each of which contained

4 byte integer key to search and a 4 byte pointer to point to the

child node. The size index buffers are fixed as 64, and the

index keys were unique integers in the range of 1 – 100,000.

The performance of B-tree, BFTL, IBSF and BMS were

assessed in terms of performance metrics: the number of pages

read, the number of pages written and the number of blocks

erased, the average time to build trees and the number of block

used. In order to control the key value distribution, a ratio

called rs (ratio of key sequence) was used. If the ratio was

equal to 1, the key values were in ascending order. However, if

the rs was equal to 0, the key values were randomly generated.

A. Performance of the B-trees creation

In this section, we assess the performance of read and write

operations and time consumption when building B-trees.

Figure 4 and Figure 5 show the number of pages read and

written when inserting records by varying the value of rs.

Overall, BMS yielded a better performance than those of IBSF,

BFTL and the original B-tree in all cases. In BMS, since it did

not split leaf nodes frequently in cases of the higher rs, the

great number of read and write operations were reduced.

Therefore, the performance of BMS was much better than

those of the others. In Figure 4, the performance of BMS was

average enhanced by 12% compared to that of IBSF, 18%

Figure 3. An example of the index buffer management in BMS

compared to that of the original B-tree and 76% compared to

that of BFTL.

For the write performance, as shown in Figure 5, BMS

improved by 19% compared to that of IBSF, 22% compared to

that of BFTL and 56% compared to that of the original B-tree.

BMS achieved a better write performance than that of the

others because it efficiently applied overflow mechanism, used

the index buffer and eliminated the redundant index units.

Figure 6 presents the consumed time when constructing the

trees. Since using overflow mechanism and eliminating

redundant index units, BMS built the tree faster than the others

in general. When the inserted keys were in ascending order, the

performance of BMS was improved by 80% compared to that

of BFTL, 92% compared to that of IBSF and 196% compared

to that of the original B-tree. In contrast, when the inserted

keys were in random order, the performance of BMS was

improved by 4% compared to that of BFTL, 9% compared to

that of IBSF and 46% compared to that of the original B-tree.

B. Page utilization

This section depicts the results of experiment based on page

utilization to assess the overflow mechanism. Figure 7

illustrates the number of flash blocks needed to store B-trees

index when 100,000 records were inserted. It is apparent that

the number of blocks that BMS used to store index was less

than that of other trees in all cases. As the ratio goes to 1, BMS

needed just by half number of blocks used compared to the

other trees did because it did not perform the node split in the

case of sequential insertions. In contrast, the leaf nodes of the

other trees are always half full because of splitting nodes, so

they needed more blocks than BMS.

V. Conclusion

Flash memory and B-tree index structure are widely used

for embedded systems, personal computers and large scale

server systems. Due to hardware restrictions, the performance

of flash memory could significantly deteriorate when directly

implementing B-tree. In this study, we proposed a new buffer

management scheme. The proposed system not only helps to

improve the performance of flash memory but also enhances

the page utilization of the flash memory by using the overflow

mechanism. The experimental results showed that BMS yields

a better performance than that of the other trees.

Acknowledgment

This research was supported by Basic Science Research

Program through the National Research Foundation of Korea

(NRF) funded by the Ministry of Education (NRF-

2015R1D1A1A01056593)

REFERENCES

[1] Shinde Pratibha et al. “Efficient Flash Translation layer

for Flash Memory,” International Journal of Scientific

and Research Publications, Volume 3, Issue 4, April 2013

[2] E.gal, S. Toledo, “Algorithms and data structures for flash

memory,” ACM Computing surveys 37, 2005, pp138-163

[3] D. S. Batory, “B+-Trees and Indexed Sequential Files: A

Performance Comparison,” Proceeding of Special Interest

Group on Management of Data, 1981, pp. 30-39.

[4] Chin-Hsien Wu et al. “An Efficient B-Tree Layer

Implementation for Flash Memory Storage Systems,”

ACM Transactions on Embedded Computing Systems,

Vol. 6, No. 3, Article 19, 2007

[5] Hyun-Seob Lee and Dong-Ho Lee, “An Efficient Index

Buffer Management Scheme for Implementing a B-Tree

on NAND Flash Memory,” Data & Knowledge

Engineering, vol. 69, no.9, 2010, pp. 901-916.

[6] Xiaona Gong et al. “A Write-Optimized B-Tree Layer for

NAND Flash,” Proceeding of the 7th International

Conference on Wireless Communications, Networking and

Mobile Computing (WiCOM), pp.1-4, 2011

[7] Drew et al., “A Comparison of File System Work-loads,”

Proceedings of the 6th USENIX Conference on File and

Storage Technologies, 2000, pp. 41-54.

[8] Andrew W Leung et al., “Measurement and Analysis of

Large Scale Network File System Workloads,”

Proceedings of the 6th USENIX Conference on File and

Storage Technologies, 2008, pp. 213-226

Figure 7. The number of blocks used

Figure 6. The average consumed time

Figure 5. The number of pages write

Figure 4. The number of pages read

