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Abstract 

Flash memory has been widely used because of its advan-

tages such as fast access speed, nonvolatile, low power 

consumption. However, erase-before write characteristic 

causes the B-tree implementation on flash memory to be 

inefficient because it generates many flash operations.  

This study introduces a novel B-tree scheme and an index 

buffer management scheme, called BMS which works over 

FTL. BMS could reduce the number of read and write 

operations and minimize the number of pages used to store 

the B-tree by applying overflow mechanism and 

eliminating redundant index units in the index buffer. The 

experimental results show that BMS yields a better 

performance than that of the other existing variants of B-

tree index.   
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I. Introduction 

Flash memory [1-2] has been widely used because it has 

many positive consequences such as high speed access, low 

power consumption, small size and high reliability. Beside 

these advantages, it has some downsides including erase-before 

write, limited life cycle. To help hosts access data stored inside 

flash memory as accessing disk drives, a module called Flash 

Translation Layer (FTL) is used to process the logical-to-

physical address mapping between the host and flash memory. 

The FTL [1] has two main features: address mapping and 

garbage collection. To date, some FTL algorithms have been 

proposed to confine physical limitation characteristics and 

improve the overall performance of flash memory. 

Despite the fact that performance of a flash memory has 

been enhanced by using FTL algorithms, it may encounter 

performance degradation problems when implementing B-tree 

index directly because the overwrite operations on flash 

memory frequently occur in case of updating B-tree nodes.  

This paper proposes a novel B-tree scheme and a new 

buffer management scheme, called BMS which uses a main-

memory resident index buffer to temporarily store newly 

created index units. When the index buffer runs out of space, 

the first index unit and its related index units are selected, then 

the BMS builds a logical node and finally writes the node into 

the flash memory. BMS could not only reduce the number of 

write operations, minimize the number of pages used by 

applying overflow mechanism, but also reduce the number of 

commit operations by buffering index units and eliminating 

redundant index units in the index buffer. 

The experimental results indicate that our proposed B-tree 

index structure achieves a better performance in comparison 

with the other existing B-trees. 

The rest of this paper is organized as follows: Section 2 

reviews basic knowledge of flash memory, flash-aware index 

structures and discusses the drawbacks of related works. Next, 

the design of BMS and its operations are presented in Section 

3. Section 4 experimentally evaluates the efficiency of BMS, 

and finally, Section 5 concludes the paper. 

II. Background and related works 

Flash memory is a type of nonvolatile storage device that is 

widely used nowadays. Unlike a hard disk, flash memory 

consists of a number of NAND flash memory arrays, a 

controller and a SRAM. A flash memory is organized in many 

blocks and each block contains a fixed number of pages. A 

page is a smallest unit of read and write operations, while erase 

operations are handled by block. Flash memory requires an 

intermediate software layer called Flash Translation Layer 

(FTL) [1] for managing and controlling data by which the 

overall performance of flash memory can be enhanced.  

B-tree index [3] is a structure that is widely used in many 

file systems and database management systems in consequence 

of quickly access capability. However, the frequent random 

writes of B-tree may degrade the efficiency of B-tree index on 

flash memory as well as the lifecycle of flash memory because 

of the erase-before write limitation of flash memory. 

To address these problems, variants of B-tree have been 

proposed for flash memory. Wu et al. presented BFTL [4], the 

first B-tree variant. BFTL is composed of a reservation buffer 

and a node translation table. Every newly created index unit 

which reflects the inserted, deleted or modified records is 

temporarily stored in the reservation buffer. When the 

reservation buffer is full, all index units in the buffer are 

flushed to flash memory in FIFO order by an internal operation 

of BFTL called commit. Since many index units for the same 

node may be written in various pages, a node translation table 

is used to collect index units and maintain the information of 

the pages having the index units of the same B-tree node. As a 

result, BFTL reduces the number of flash operations. However, 

it may generate many read operations to access a B-tree node 

because the data of one node may be scattered in different 

pages. Moreover, the node translation table and its list must be 



maintained in RAM and its size may rapidly grow. Therefore, 

BFTL consumes a large amount of main memory. In addition, 

BFTL has a variety of redundant index units in the index buffer 

leading to that many write operations are performed. 

 In order to solve the drawbacks of BFTL, a new index 

buffer management scheme named IBSF [5] was proposed. 

The main idea of IBSF is to store all index units associated 

with a B-tree node into one page, so IBSF does not need the 

node translation table. Similar to BFTL, IBSF temporarily 

stores newly created index units into the index buffer. When 

flushing records from the index buffer to flash memory, IBSF 

selects victim index units by identifying the records to be 

inserted into a same logical node. This prevents them from 

spreading across several flash pages. Thus, IBSF reduces the 

search overhead of BFTL. However, due to the fact that there 

are a lot of redundant index units in the index buffer of IBSF, 

many commit operations and write operations are executed. 

Later on, a write-optimized B-tree layer for NAND Flash 

memory (WOBF) [6] was proposed. Basically, WOBF inherits 

the advantages of BFTL and IBSF. It employs the node 

translation table used in BFTL and the commit policy of IBSF. 

Its performance is improved by sorting all the index units in 

the index buffer before performing commit operations. Sorting 

all the index units prevents the index units belonging to the 

same node from being scattered over many pages. This reduces 

the number of read operations when building a logical node. 

Nevertheless, similar to BFTL and IBSF, WOBF still has a lot 

of redundant index units in the index buffer. 

III. The design and implementation of BMS 

A. The design of BMS 

This section presents a new B-tree index structure and a 

new buffer management scheme, called BMS, to efficiently 

implement a B-tree on flash memory. Its objective is to 

significantly reduce the number of flash operations when 

building a B-tree and minimize the number of flash pages used 

to store the nodes of B-tree. BMS is a software module which 

can be used by any access module for the application using the 

B-tree on flash memory. It processes the B-tree related 

requests from upper layer and sends requests to FTL. 

In order to achieve the aforementioned goal, we maintain a 

main-memory resident index buffer which temporarily stores 

newly created index units and a B-tree module which is resided 

in flash to avoid losing data.  

Figure 1 shows the architecture of BMS comprising an 

index buffer and a B-tree module. 

The B-tree module adopts the overflow mechanism which 

does not split the leaf node if the leaf node is fulfilled by 

sequential key values. In BMS, instead of splitting the full leaf 

node whose keys are inserted sequentially, the leaf node is 

written into flash memory before the overflow occurs. This 

mechanism helps BMS reduce the large number of read, write 

operations. The index buffer is managed by the commit policy. 

It is used to store index units temporarily which reflect the 

modified nodes. 

The index unit consists of components of the original B-

tree node: primary_key, data_ptr, parent_ptr, right_ptr, and 

left_ptr. Besides the original components, the index unit has 

two more components that are node_identifier and type. The 

node_identifier denotes to which B-tree node the index unit is 

belonging. The type distinguishes whether the data is for the 

insertion or deletion. 

The index buffer manages two type of index units: 

insertion_type and deletion_type. When the index buffer is 

full, commit operations are executed to flush some index units 

from index buffer to flash memory. Since BMS stores all index 

units for one node in one page and many redundant index units 

in the index buffer are eliminated, a large number of read and 

write operations are reduced when constructing B-tree. 

B. The implementation of BMS 

1. Insertion operation 

When a record is inserted to B-tree, one or more index 

units are created to reflect the insertion. The processing is 

performed as follows: BMS checks if there is a redundant 

index unit which has the same primary key in the index buffer 

or not. In case of existing, BMS deletes the redundant index 

unit, and then inserts the newly created index unit into the 

index buffer. On the contrary, BMS checks whether the index 

buffer is full or not. If the index buffer is not full, BMS inserts 

the newly created index unit into it. By contrast, BMS 

performs a commit operation to vacate the index buffer, then, 

inserts the newly created index unit into the buffer.  

A special case of the insertion operations is that all keys of 

a leaf node are inserted contiguously. This could be 

exemplified by inserting sequential records as shown in Figure 

2. In this example, node D has 4 keys in which each key value 

in turn is 13, 14, 15, and 16. If a record with key = 20 is 

inserted into the general B-tree, the leaf node D is overflow, 

and in consequence of that, the leaf node D is split into two 

nodes. A split operation of a leaf node results in many read, 

write and erase operations and it may lead to a serial split 

operation of the parent nodes in the general B-trees. Therefore, 

the number of flash operations increases significantly. BMS 

performs these insert operations in a different way applying 

overflow mechanism. BMS will store the whole node D into 

flash memory before the overflow occurs instead of splitting 

 

Figure 1. Overall architecture of BMS 

 

 

Figure 2. An example of sequential insertion 



the leaf node D. Afterwards, the new record is inserted into a 

new node E.  

Processing insert operations under this order allows BMS 

to reduce a number of flash operations. Additionally, the page 

utilization increases because the utilization of the leaf is full in 

BMS. As about 80-90% of the write pattern is sequential in the 

practical file systems [7, 8], the performance of BMS in the 

practical systems will be enhanced. 

2. Deletion operation 

Similar to an insertion operation, when a record is deleted 

from B-tree, an index unit is created to reflect the deletion. 

However, the processing of deletion operation is a bit different 

from that of insertion operation due to the discrepancy in the 

structure between deletion_type and insertion_type index unit. 

For the deletion_type, it only needs the location of the entry in 

the node to reflect the deletion of entry in the B-tree node. 

Since the location of entries can be expressed as a bit flag set, 

the deletion_type index unit maintains a bit flag set to mark the 

entries to be deleted. Therefore, many deletion_type index 

units for one node can be stored in one index unit. This helps 

BMS reduce the number of redundant index units in the index 

buffer.  

The processing of deletion operation is executed as 

follows: A deletion_type index unit is created when a record is 

deleted. BMS checks whether or not the index buffer has the 

insertion_type index unit which has the same key value as that 

of the newly created index unit. If so, BMS deletes the 

insertion_type index unit without inserting the newly created 

index unit (deletion_type index unit) into the index buffer. On 

the other hand, if there is a deletion_type index unit having the 

same node_identifier as that of the newly created index unit, 

BMS updates it by converting the bit flag set. Nevertheless, if 

there is not, BMS inserts the newly created index unit into the 

index buffer if the index buffer is not full. Otherwise, a commit 

operation is executed to vacate the index buffer and then the 

newly created index unit is inserted into the index buffer. 

As shown in the figure 3, the index unit <14, C, i> is the 

redundant index unit when the index unit <14, C, d> is created.  

3. Commit operation 

The newly created index units are temporarily stored in the 

index buffer. Owing to the limitation of the index buffer size, 

BMS has to flush index units from the index buffer to flash 

memory when the index buffer is full by using commit 

operation. The commit operation is as follows: First, BMS 

chooses the first index unit in the index buffer and collects its 

related index units. Next it reads the page associated with this 

index unit, builds the logical B-tree node and finally writes the 

node into flash memory.  

Algorithm 1 presents detail of the commit operation. In line 

1, BMS gets the first index unit in the index buffer. In line 2 to 

8, BMS collects all index units which belong to the same node 

with the first index unit. After collecting index units, BMS 

reads the logical node related to the victim index units, reflects 

victim index units into the logical node and then writes the 

logical node into flash memory as displayed from line 9 to 11. 

Algorithm 1. Commit operation 

1:  Input: New_index_unit 

2:  Output: none 

3:  v_identifier=the first index unit identifier in the buffer 

4:  for i=2 to sizeof(index_buffer) 

5:  if v_identifier is the same as the identifier of index_unit(i) 

6: collect index_unit(i) as victim index units 

7:   end if 

8:   end for 

9:   read the logical node related to the victim index units 

10: reflect victim index units into the logical node 

11: write the logical node into flash memory 

Since redundant index units in the index buffer are 

eliminated, BMS reduces the number of index units in the 

index buffer. Consequently, BMS reduces a large number of 

commit operations and write operations on flash memory. 

IV. Performance evaluation 

This section shows the experimental results achieved by 

applying the proposed BMS and compares its performance to 

that of the original B-tree, BFTL and IBSF. All variant B-trees 

were performed on a NAND flash simulator which might be 

able to count the internal flash operations (read/write/erase). 

This simulator was configured for 64MB SLC NAND flash 

memory with 528 byte page size and 16 Kbyte block size. 

Every node of B-trees had 64 entries, each of which contained 

4 byte integer key to search and a 4 byte pointer to point to the 

child node. The size index buffers are fixed as 64, and the 

index keys were unique integers in the range of 1 – 100,000.  

The performance of B-tree, BFTL, IBSF and BMS were 

assessed in terms of performance metrics: the number of pages 

read, the number of pages written and the number of blocks 

erased, the average time to build trees and the number of block 

used. In order to control the key value distribution, a ratio 

called rs (ratio of key sequence) was used. If the ratio was 

equal to 1, the key values were in ascending order. However, if 

the rs was equal to 0, the key values were randomly generated. 

A. Performance of the B-trees creation 

In this section, we assess the performance of read and write 

operations and time consumption when building B-trees. 

Figure 4 and Figure 5 show the number of pages read and 

written when inserting records by varying the value of rs. 

Overall, BMS yielded a better performance than those of IBSF, 

BFTL and the original B-tree in all cases. In BMS, since it did 

not split leaf nodes frequently in cases of the higher rs, the 

great number of read and write operations were reduced. 

Therefore, the performance of BMS was much better than 

those of the others. In Figure 4, the performance of BMS was 

average enhanced by 12% compared to that of IBSF, 18% 

 

Figure 3. An example of the index buffer management in BMS 

 



compared to that of the original B-tree and 76% compared to 

that of BFTL.  

 

For the write performance, as shown in Figure 5, BMS 

improved by 19% compared to that of IBSF, 22% compared to 

that of BFTL and 56% compared to that of the original B-tree. 

BMS achieved a better write performance than that of the 

others because it efficiently applied overflow mechanism, used 

the index buffer and eliminated the redundant index units. 

 

Figure 6 presents the consumed time when constructing the 

trees. Since using overflow mechanism and eliminating 

redundant index units, BMS built the tree faster than the others 

in general. When the inserted keys were in ascending order, the 

performance of BMS was improved by 80% compared to that 

of BFTL, 92% compared to that of IBSF and 196% compared 

to that of the original B-tree. In contrast, when the inserted 

keys were in random order, the performance of BMS was 

improved by 4% compared to that of BFTL, 9% compared to 

that of IBSF and 46% compared to that of the original B-tree. 

 

B. Page utilization 

This section depicts the results of experiment based on page 

utilization to assess the overflow mechanism. Figure 7 

illustrates the number of flash blocks needed to store B-trees 

index when 100,000 records were inserted. It is apparent that 

the number of blocks that BMS used to store index was less 

than that of other trees in all cases. As the ratio goes to 1, BMS 

needed just by half number of blocks used compared to the 

other trees did because it did not perform the node split in the 

case of sequential insertions. In contrast, the leaf nodes of the 

other trees are always half full because of splitting nodes, so 

they needed more blocks than BMS. 

 

V. Conclusion 

Flash memory and B-tree index structure are widely used 

for embedded systems, personal computers and large scale 

server systems. Due to hardware restrictions, the performance 

of flash memory could significantly deteriorate when directly 

implementing B-tree. In this study, we proposed a new buffer 

management scheme. The proposed system not only helps to 

improve the performance of flash memory but also enhances 

the page utilization of the flash memory by using the overflow 

mechanism. The experimental results showed that BMS yields 

a better performance than that of the other trees. 
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Figure 7. The number of blocks used 

 

 

Figure 6. The average consumed time 

 

Figure 5. The number of pages write 

 

 

Figure 4. The number of pages read 


